6 - 4 Parallel Lines and Proportional Parts (Day One)

Theorem 6.4: (Triangle Proportionality Theorem)

If a line is <u>parallel</u> to one side of a triangle and <u>intersects</u> the other two sides in two distinct points, then it separates these sides into segments of <u>proportional lengths</u>.

Ex: In \triangle EFG, $\overline{HL}||\overline{EF}$, EH = 9, HG = 21, and FL = 6. Find LG.

Theorem 6.5:

(Converse of the Triangle Proportionality Theorem)

If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional length, then the line is parallel to the third side.

Ex: In \(\triangle HKM, HM = 15, HN = 10, and HJ \) is twice the length of JK. Determine whether \(\overline{NJ} \) \(\overline{MK}. \)

405

midsegment: segment whose endpoints are the midpoints of 2 sides of a Δ

Theorem 6.6 (Triangle Midsegment Theorem)

A midsegment of a triangle is <u>parallel</u>
to one side of the triangle, and its
length is <u>1 the length of that side</u>.

Ex: $\triangle ABC$ has vertices A(-4, 1), B(8, -1), and C(-2, 9). \overline{DE} is a midsegment of $\triangle ABC$.

a.) Find the coordinates of D and E.

D:
$$\left(-\frac{4+8}{2}, \frac{1+-1}{2}\right) = (2,0)$$

E: $\left(\frac{8+-2}{2}, \frac{1+9}{2}\right) = (3,4)$

Ex: △ABC has vertices A(- 4, 1), B(8, - 1), and C(- 2, 9). DE is a midsegment of △ABC.

b.) Verify that \overline{AC} is parallel to \overline{DE} .

$$MAC = \frac{1-9}{4+2} = \frac{-8}{-2} = 4$$
 $MDE = \frac{0-4}{2-3} = \frac{-4}{-1} = 4$

On your own...

1.) In $\triangle RST$, $\overline{RT} | \overline{VU}$, SV = 3, VR = 8, and UT = 12. Find SU.

$$\frac{3}{8} = \frac{1}{12}$$
 $\frac{3}{8} = \frac{1}{12}$
 $\frac{3}{12} = \frac{4}{12}$
 $\frac{3}{12} = \frac{4}{12}$
 $\frac{3}{12} = \frac{1}{12}$
 $\frac{3}{12} = \frac{1}{12}$
 $\frac{3}{12} = \frac{1}{12}$
 $\frac{3}{12} = \frac{1}{12}$
 $\frac{3}{12} = \frac{1}{12}$

2.) In \triangle DEF, DH = 18, HE = 36, and DG = $\frac{1}{2}$ GF. Determine whether GH | FE.

- 3.) \triangle ABC has vertices A(-2, 2), B(2, 4), and C(4, -4). \overline{DE} is a midsegment of \triangle ABC.
 - a.) Find the coordinates of D and E.

b.) Verify that BC
$$| DE$$
.

